МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУВПО «Пермский государственный национальный исследовательский университет»
Кафедра неорганической химии
Лютеций. Производство лютеция
Выполнила: студентка 5 курса
кафедры неорганической химии
Глазунова Е.А.
Проверил: Корзанов В.С.
Пермь,2014г
История открытия
Lu, химический элемент III гр. периодической системы. Относится к редкоземельным элементам (иттриевая подгруппа лантаноидов). Природный лютеций состоит из двух изотопов 175Lu (97,40%) и 176Lu (2,6%); 176Lu радиоактивен. Конфигурация внешней электронной оболочки 4f145s25p65d16s2; степень окисления +3
Элемент в виде оксида в 1907 году независимо друг от друга открыли французский химик Жорж Урбэн, австрийский минералог Карл Ауэр фон Вельсбах и американский химик Чарльз Джеймс. Все они обнаружили лютеций в виде примеси к оксиду иттербия, который, в свою очередь, был открыт в 1878 г. как примесь к оксиду эрбия, выделенному в 1843 г. из оксида иттрия, обнаруженного в 1797 г. в минерале гадолините. Все эти редкоземельные элементы имеют очень близкие химические свойства. Приоритет открытия принадлежит Ж. Урбэну.
Происхождение названия
Название элемента его первооткрыватель Жорж Урбен произвёл от латинского названия Парижа -- Lutetia Parisorum. Для иттербия, от которого был отделён лютеций, было предложено название неоиттербий. Оспаривавший приоритет открытия элемента Фон Вельсбах предложил для лютеция название кассиопий (cassiopium), а для иттербия -- альдебараний (aldebaranium) в честь созвездия Северного полушария и самой яркой звезды созвездия Тельца. Учитывая приоритет Урбена в разделении лютеция и иттербия, в 1914 году Международная комиссия по атомным весам приняла название Lutecium, которое в 1949 г. было изменено на Lutetium (русское название не менялось). Тем не менее, до начала 1960-х годов в работах немецких учёных употреблялось название кассиопий.
Свойства
Физические свойства
Лютеций -- металл серебристо-белого цвета, легко поддаётся механической обработке. Он является самым тяжёлым элементом среди лантаноидов как по атомному весу, так и по плотности (9,8404 г/смі). Температура плавления лютеция (1663 °C) максимальна среди всех редкоземельных элементов. Благодаря эффекту лантаноидного сжатия, среди всех лантаноидов лютеций имеет наименьшие атомный и ионный радиусы.
Химические свойства
При комнатной температуре на воздухе лютеций покрывается плотной оксидной плёнкой, при температуре 400 °C окисляется. При нагреве взаимодействует с галогенами, серой и другими неметаллами.
Лютеций реагирует с неорганическими кислотами с образованием солей.
Гидроксиды
Lu(OH)3 в воде почти нерастворим. Lu(OH)3 обладает преимущественно основным характером, легко реагирует с соляной, азотной и серной кислотами, образуя соответствующие соли и по силе находятся между Mg(OH)2 и Al(OH)3. Адсорбционная способность гидроксида ярко выражена. Lu(OH)3 и предложен в качестве специальных сорбентов.
Гидропероксиды
Lu(OH)2(OOH)·nH2O получают из раствора соли или из гидроксида в виде желатинообразного осадка действием щелочи и пероксида водорода.
Предполагается следующий механизм образования гидропероксидов:
Lu(OH)3 + H2O2 > Lu(OH)2(OOH) + H2O.
Гидропероксид очень неустойчив. Находясь в равновесии с водными растворами, он теряет часть активного кислорода. Концентрированная H2SO4 разлагает его с выделением озона. Под действием разбавленной H2SO4 выделяется H2O2; так же действуют CO2 и многие кислоты. При высушивании над концентрированной H2SO4 пероксид теряет воду и часть активного кислорода. При 200єС происходит полное отщепление активного кислорода. Гидропероксид лютеция требует дальнейшего исследования.
Сульфаты.
Гидратированный сульфат лютеция состава Lu2(SO4)3·nH2O получают растворением оксида, гидроксида или карбоната в разбавленной серной кислоте и последующим упариванием раствора. Сульфаты выделяются с различным содержанием кристаллизационной воды: Lu - 8.
Безводные сульфаты
Получают нагреванием гидрата до 600-650єС, либо действием концентрированной H2SO4 на Lu2O3 при сильном нагревании с последующим удалением избытка кислоты. Сначала образуется кислый сульфат, который при нагревании разлагается:
Ln2O3 + 6H2SO4 > 2Ln(HSO4)3 + 3H2O,
2Ln(HSO4)3 > Ln2(SO4)3 + 3SO3 + 3H2O.
Дальнейшее нагревание ведет к образованию основной соли и около 900°С состав его отвечает формуле Lu2О3•SО3. Выше 1000°С основная соль переходит в оксид.
Безводный сульфат Lu2(SО4)3 представляет собой гигроскопичный порошок. В холодной воде хорошо растворим.
Тиосульфаты
Lu2(S2O3)3 образуется при взаимодействии тиосульфата натрия или бария с солью лютеция. Тиосульфат хорошо растворим в воде, поэтому он не выпадает в виде осадка из разбавленных растворов. Из концентрированных растворов постепенно осаждается в виде порошкообразной массы. Тиосульфат полностью высаливается из раствора метиловым или этиловым спиртом. При подкислении раствора хлороводородной кислотой - разлагается:
Lu2(S2O3)3 > Lu2(SO3)3 + 3S.
Повышение температуры до 800-1000єС ведет к разложению тиосульфата до оксосульфита Lu2O(SO3)2.
Селениты
Lu2(SeO3)3·nH2O получают действуя на соль лютеция селенитом натрия или селенистой кислотой. Мало растворим в воде и минеральных кислотах Растворим в минеральных кислотах в присутствии H2O2.
Нитраты
Lu(NO3)3 получают по реакции:
Lu2O3 + 6N2O4 > 2Lu(NO3)3 + 3N2O3.
В виде кристаллогидратов нитрат получают, растворяя оксид, гидроксид и карбонат лютеция в азотной кислоте с последующим упариванием раствора:
Lu2O3 + 6HNO3 > 2Lu(NO3)3 + 3H2O,
Lu2(CO3)3 + 6HNO3 > 2Lu(NO3)3 + 3H2O + 3CO2.
Силикаты
Lu2O3·SiO2 получают, прокаливая оксалатлютеция с эквивалентным количеством кварцевого песка при 1700єС до плавления:
Lu2(C2O4)3 + 3SiO2 +3/2O2 = Lu2(SiO3)3 + 6CO2.
Силикат не растворяется в воде. Установлено, что лютеций образует ортосиликат Lu2O3·SiO2 и пиросиликат Lu2O3·2SiO2.
Молибдаты
Lu2(MoO4)3 получают, сплавляя хлорид лютеция с молибдатами щелочных металлов или обезвоживая кристаллогидраты молибдатов нагреванием до плавления. Может быть получен сплавлением Lu2O3 с MoO3 при 850-900єС.
Молибдат лютеция с молибдатами других металлов образует двойные соли. Получаются кристаллизацией из расплава, содержащего оксид лютеция, молибдена и щелочного элемента. Кристаллизацией из расплава, содержащего молибдат лютеция и молибдат щелочного элемента, образуются двойные молибдаты состава MeLu(MoO4)2, Me5Lu(MoO4)4 и др. (где Me - Li, Na, K, Rb, Cs).
Вольфраматы
Lu2(WO4)3·nH2O получают из раствора при взаимодействии вольфрамата натрия с нитратом лютеция. Безводный вольфрамат Lu2(WO4)3 получают спеканием оксида Lu2O3 и WO3 при 1000єС. Вольфрамат лютеция нерастворим в воде, спирте и ацетоне. Разбавленные минеральные кислоты, и растворы щелочей при комнатной температуре действуют на вольфрамат медленно. При 80-120єС кислоты и щелочи растворяют его нацело.
Оксалаты
Lu2(C2O4)3·nH2O получают, добавляя щавелевую кислоту, либо ее соль к нейтральному или слабокислому раствору (рН=2-3) соли лютеция:
Lu2(SO4)3 + 3H2C2O4 = Lu2(C2O4)3 + 3H2SO4.
Оксалат выпадает в виде белого творожистого осадка, который при нагревании становится кристаллическим. В большинстве случаев оксалат кристаллизуется с 10 молекулами воды.
Получение
Получают осаждением из водных растворов солей лютеция при действии фтористоводородной кислоты, может быть также получен взаимоействием Lu2O3 с газообразным HF, F2 или NH2HF2, термическим разложением фтораммонийных комплексов при 400-500°С и др. Для выделения Lu(III) из раствора обычно используют осаждение оксалата (рН 3-4). Металлический лютеций получают восстановлением LuF3 кальцием
Области применения
лютеций редкоземельный металл
Металлургия.
Высокое химическое сродство к неметаллам (H, C, P, N, S, O), обычно присутствующим в черных металлах и их сплавах обусловило использование лютеция для эффективного удаления (раскисления, десульфурации) этих неметаллов из различных сталей. Добавление 2 кг лютеция на тонну стали, существенно увеличивает ее прочность и ковкость. Использование силицидов лютеция при производстве трубной стали, улучшает ее ударную вязкость и обрабатываемость.
Важную роль играет лютеций в производстве высокопрочного чугуна.
Добавка 0,15 % лютеция значительно улучшает физико-механические свойства чугуна. РЗЭ постепенно вытесняют использующийся для этих же целей магний.
Жаропрочные магнитные сплавы с лютецием применяются для производства деталей реактивных самолетов, управляемых снарядов, космических аппаратов
Стекольная и керамическая промышленность.
Соединения лютеция применяют как для окрашивания стекла, так и для обесцвечивания его для изготовления специальных стекол, поглощающих УФ-излучение
Перспективно применение лютеция для изготовления специальной керамики. Широкое применение нашли оксиды лютеция в качестве абразивных материалов для полировки листового и зеркального стекла, телевизионных трубок, бинокулярных линз, прецизионных оптических стекол, линз объективов и т. д.