Биохимия мышечного сокращения
Работа из раздела: «
Медицина»
Новосибирский государственный педагогический университет
Реферат по предмету
«Биохимия»
на тему:
«Биохимия мышечного сокращения»
Выполнил: студент 3 курса ЕГФ
отделения «Валеология», гр. 1А
Литвиченко Е.М.
Проверил: Сайкович Е.Г.
г. Новосибирск 2000 г.
Интерес биохимии к процессам происходящим в сокращающихся мышцах
основан не только на выяснении механизмов мышечных болезней, но и что может
быть даже более важным – это раскрытие механизма превращения электрической
энергии в механическую, минуя сложные механизмы тяг и передач.
Для того, чтобы понять механизм и биохимические процессы происходящие
в сокращающихся мышцах, необходимо заглянуть в строение мышечного волокна.
Структурной единицей мышечного волокна являются Миофибриллы – особым
образом организованные пучки белков, располагающиеся вдоль клетки.
Миофибриллы в свою очередь построены из белковых нитей (филаментов) двух
типов – толстых и тонких. Основным белком толстых нитей является миозин, а
тонких – актин. Миозиновые и актиновые нити – главный компонент всех
сократительных систем в организме. Электронно-микроскопическое изучение
показало строго упорядоченное расположение миозиновых и актиновых нитей в
миофибрилле. Функциональной единицей миофибриллы является саркомер –
участок миофибриллы между двумя Z-пластинками. Саркомер включает в себя
пучок миозиновых нитей, серединой сцепленных по так называемой М-пластине,
и проходящих между ними волокон актиновых нитей, которые в свою очередь
прикреплены к Z-пластинам.
Рис.
Сокращение происходит путем скольжения тонких актиновых и толстых
миозиновых нитей навстречу друг другу или вдвигания актиновых нитей между
миозиновыми в направлении М-линии. Максимальное укорочение достигается
тогда, когда Z-пластинки, к которым прикреплены актиновые нити,
приближаются к концам миозиновых нитей. При сокращении саркомер
укорачивается на 25-50 %.
Саркоплазма, вмещающая миофибриллы, пронизана между ними сетью
цистерн и трубочек эндоплазматического ретикулума, а также системой
поперечных трубочек, которые тесно контактируют с ним, но не сообщаются.
Строение миозиновых нитей.
Миозиновые нити образованы белком миозином, молекула которого
содержит две идентичные тяжелые полипептидные цепи с молекулярной массой
около 200 000 и четыре легкие цепи (около 20 000). Каждая тяжелая цепь на
большей части своей длины имеет конформацию (-спирали, и обе тяжелые цепи
скручены между собой, образуя часть молекулы в форме палочки. С
противоположных концов каждой цепи присоединены по две легкие цепи, вместе
с глобулярной формой этих концов цепи они образуют «головки» молекул.
Палочкообразные концы молекул могут соединяться друг с другом продольно,
образуя пучки, головки молекул при этом располагаются кнаружи от пучка по
спирали. Кроме того, в области М-линии пучки соединяются между собой «хвост
в хвост». Каждая миозиновая нить содержит около 400 молекул миозина.
Рис.1 Рис.2
Строение актиновых нитей.
В состав актиновых нитей входят белки актин, тропомиозин и тропонин.
Основу составляют молекулы актина. Сам белок актин – глобулярный белок с
молекулярной массой 43 000 и шарообразной формой молекулы. Нековалентно
соединяясь, глобулярный актин образует фибриллярный актин, напоминая по
форме две скрученные между собой нитки бус.
молекулы актина
молекулы тропонина молекулы тропомиозина
Другой белок, входящий в актиновые нити – тропомиозин – имеет форму
палочек, он располагается вблизи желобков спиральной ленты фибриллярного
актина, вдоль нее. Размер его в длину в 8 раз больше размера глобулярного
актина, потому одна молекула тропомиозина контактирует сразу с семью
молекулами актина и концами связаны друг с другом, образуя третью
продольную спирально закрученную цепочку.
Третий белок актиновых нитей – тропонин – состоит из трех разных
субъединиц и имеет глобулярную форму. Он нековалентно связан и с актином и
тропомиозином таким образом, что на одну молекулу тропонина приходится одна
молекула тропомиозина, кроме того одна из его субъединиц содержит Ca-
связывающие центры. Тонкие актиновые нити прикреплены к Z-пластинам, тоже
белковым структурам.
Механизм сокращения мышцы.
Сокращение мышц есть результат укорочения каждого саркомера,
максимальное укорочение саркомера достигается тогда, когда Z-пластинки, к
которым прикреплены актиновые нити, приближаются вплотную к концам
миозиновых нитей.
В сокращении мышц у актиновых и миозиновых нитей свои роли:
миозиновые нити содержат активный центр для гидролиза АТФ, устройство для
превращения энергии АТФ в механическую энергию, устройство для сцепления с
актиновыми нитями и устройства для восприятия регуляторных сигналов со
стороны актиновых нитей, актиновые нити имеют механизм сцепления с
миозиновыми нитями и механизм регуляции сокращения и расслабления.
Сокращение мышцы включается потенциалом действия нервного волокна, который
через нервно-мышечный синапс при посредстве медиатора трансформируется в
потенциал действия сарколеммы и трубочек Т-системы. Ответвления трубочек
окружают каждую миофибриллу и контактируют с цистернами
саркоплазматического ретикулума. В цистернах в значительной концентрации
содержится Ca. Потенциал действия, поступающий по трубочкам, вызывает
высвобождение ионов Ca2+ из цистерн саркоплазматического ретикулума. Ионы
Ca2+ присоединяются к Сa-связывающей субъединице тропонина. В присутствии
ионов Ca2+ на мономерах актиновых нитей открываются центры связывания
миозиновых головок, причем по всей системе тропонин – тропомиозин – актин.
Как результат этих изменений – миозиновая головка присоединяется к
ближайшему мономеру актина.
Головки миозина обладают высоким сродством к АТФ, так что в мышце
большинство головок содержит связанный АТФ. Присоединение головки миозина к
актину, активирует АТФ-азный центр, АТФ гидролизуется, АДФ и фосфат
покидают активный центр, что приводит к изменению конформации миозина:
возникает дополнительное напряжение, стремящееся уменьшить угол между
головкой и хвостом молекулы миозина, т.е. наклонить головку в направлении М-
линии. Поскольку миозиновая головка соединена с актиновой нитью, то,
наклоняясь в сторону М-линии она смещает в этом же направлении и актиновую
нить.
АДФ, высвобождаемые с множества головок проходят следующую
трансформацию:
2 АДФ ( АТФ + АМФ
Освобожденные от АТФ головки снова притягивают к себе АТФ в связи с
его высоким сродство, о чем уже упоминалось выше, присоединение АТФ
уменьшает сродство миозиновой головки с актиновыми нитями и миозин
возвращается в исходное состояние. Далее повторяется весь цикл с самого
начала, но поскольку в предыдущем цикле актиновая нить за счет своего
движения приблизила Z-пластинку, то та же самая головка миозина
присоединяется уже к другому мономеру актина ближе к Z-пластинке.
Сотни миозиновых головок каждой миозиновой нити работают одновременно,
втягивая таким образом актиновую нить.
Источники энергии мышечного сокращения.
Скелетная мышца, работающая с максимальной интенсивностью, потребляет
в сотни раз больше энергии, чем покоящаяся, причем переход от состояния
покоя к состоянию максимальной работы происходит за доли секунды. В связи с
этим у мышц совсем по-другому построен механизм изменения скорости синтеза
АТФ в очень широких пределах.
Как уже упоминалось при мышечном сокращении большое значение имеет
процесс синтеза АТФ из АДФ, высвобождаемых из миозиновых головок. Это
происходит при помощи, имеющегося в мышцах высокоэнергетического вещества
креатинфосфата, которое образуется из креатина и АТФ при действии
креатинкиназы:
NH NH
II II
C-NH2 C-NH-PO3H2
I I
N-CH3+АТФ ( N-CH3 + АДФ
I I
CH2 CH2
I I
COOH COOH
Креатин Креатинфосфат
Эта реакция легко обратима и идет анаэробно, что обеспечивает быстрое
включение мышц в работу на ранних этапах. При продолжении нагрузки роль
такого энергетического обеспечения снижается, а на его замену приходят
гликогеновые механизмы обеспечения большим количеством АТФ.
Библиография:
Г. Дюга, К. Пенни «Биоорганическая химия», М., 1983
Д. Мецлер «Биохимия», М., 1980
А. Ленинджер «Основы биохимии», М., 1985
-----------------------
[pic]
Две легкие цепи
Две тяжелые цепи
Зона М-линии