Метод хорд
Работа из раздела: «
Математика»
Министерство образования и науки РФ
Рязанская Государственная Радиотехническая Академия
Кафедра САПР ВС
Пояснительная записка к курсовой работе
по дисциплине ,,Информатика”
Тема: ,,Метод хорд”
Выполнил:
студент 351 группы
Литвинов Е.П.
Проверил:
Скворцов С.В.
Рязань 2004г.
Контрольный пример к курсовой работе студента 351 группы Литвинова Евгения.
Задание: Разработать программу, которая выполняет уточнение корня
нелинейного уравнения отделенного на заданном интервале [a,b], заданным
методом.
Решить нелинейное уравнение с использованием разработанной программы
и средств системы MathCAD. Сравнить полученные результаты.
Определить количество необходимых итераций для следующих значений
погрешностей результата: Eps=[pic];[pic];[pic];[pic];[pic].
Используемый метод: метод хорд.
Контрольный пример: [pic] ;
Интервал [a,b]: [0,1].
Вариант: 2.2
Задание принял:
Число выдачи задания:
Число выполнения задания:
Проверил: Скворцов С.В.
Метод хорд.
Пусть дано уравнение [pic], где [pic] - непрерывная функция, имеющая
в интервале (a,b) производные первого и второго порядков. Корень считается
отделенным и находится на отрезке [a,b].
Идея метода хорд состоит в том, что на достаточно малом промежутке
[a,b] дугу кривой [pic]можно заменить хордой и в качестве приближенного
значения корня принять точку пересечения с осью абсцисс. Рассмотрим случай
(рис.1), когда первая и вторая производные имеют одинаковые знаки, т.е.
[pic].
Уравнение хорды - это уравнение прямой, проходящей через две точки
(a, f(a)) и (b, f(b)).
Общий вид уравнения прямой, проходящей через две точки:
[pic]
Подставляя в эту формулу значения, получим уравнение хорды AB:
[pic].
Пусть x1 - точка пересечения хорды с осью x, так как y = 0, то
[pic]
x1 может считаться приближенным значением корня.
Аналогично для хорды, проходящей через точки [pic] и [pic],
вычисляется следующее приближение корня:
[pic]
В общем случае формулу метода хорд имеет вид:
[pic]
(1)
Если первая и вторая производные имеют разные знаки, т.е. [pic][pic],
то все приближения к корню [pic] выполняются со стороны правой границы
отрезка [pic] (рис.2) и вычисляются по формуле:
[pic]
(2)
Выбор формулы в каждом конкретном случае зависит от вида функции [pic]
и осуществляется по правилу: неподвижной является такая граница отрезка
[pic] изоляции корня, для которой знак функции совпадает со знаком второй
производной. Формула (1) используется в том случае, когда [pic]. Если
справедливо неравенство [pic], то целесообразно применять формулу (2).
Итерационный процесс метода хорд продолжается до тех пор, пока не
будет получен приближенный корень с заданной степенью точности. При оценке
погрешности приближения можно пользоваться соотношением
Если обозначить через m наименьшее значение |f'(x)| на промежутке
[a, b], которое можно определить заранее, то получим формулу для оценки
точности вычисления корня:
[pic] или [pic]
где [pic]- заданная погрешность вычислений.
Список идентификаторов.
a – начало отрезка,
b – конец отрезка,
eps – погрешность вычислений,
x – искомое значение корня,
min – модуль значения производной функции в начале отрезка,
d – модуль значения производной функции в конце отрезка,
x0 – точка, в которой мы ищем производную.
****************************************************************
Program kursovaia;
uses crt;
Var
a,b,eps,x,min: real;
{Вычисление данной функции}
Function fx(x:real): real;
begin
fx:=exp(x)-10*x;
end;
----------------------------------------------------------------
{Функция вычисления производной и определение точности вычислений}
{Для определения точности вычисления берем значение 2-й производной в точке
x*=[pic]}
Function proizv(x0,eps: real): real;
var
dx,dy,dy2: real;
begin
dx:=1;
Repeat
dx:=dx/2;
dy:=fx(x0+dx/2)-fx(x0-dx/2);
dy2:=fx(5*x0/4+dx)-2*fx(5*x0/4);
dy2:=dy2+fx(5*x0/4-dx);
Until abs(dy2/(2*dx))1;
utoch:=k;
end;
----------------------------------------------------------------
{Процедура определения наименьшего значения производной на
заданном промежутке}
Procedure minimum(a,b,eps: real; var min: real);
var
d: real;
begin
a:=a-eps;
b:=b+eps;
Repeat
a:=a+eps;
b:=b-eps;
min:=abs(proizv(a,eps));
d:=abs(proizv(b,eps));
If min>d Then min:=d
Until min <>0
end;
----------------------------------------------------------------
{Процедура уточнения корня методом хорд}
Procedure chord(a,b,eps,min: real; var x:real);
Var
x1: real;
begin
x1:=a;
Repeat
x:=x1-((b-x1)*fx(x1))/(fx(b)-fx(x1));
x1:=x
Until abs(fx(x))/mind Then – сравнение значений модуля производной.
Функция для указания точности вычисления:
Function utoch(eps:real):integer;
Применяется в выводе корня x для уточнения его порядка относительно
погрешности.
Здесь k:=k+1 – оператор, подсчитывающий степень погрешности и
порядка корня x.
Заданную функцию запишем так:
Function fx(x:real):real;
Здесь fx:=exp(x)-10*x – наша заданная функция.
Блок-схема алгоритма.
[pic]
[pic]
[pic]
[pic]
[pic]
[pic]
Список используемой литературы:
1) Математическое обеспечение САПР: Методические указания к практическим
занятиям. Рязань, РРТИ, 1990 (№1706).
2) Математическое обеспечение САПР: Методические указания к лабораторным
работам. Рязань, РРТИ, 1991 (№1890).
3) Бахвалов Н.С., Шадков И.П., Кобельников Г.М., Численные методы. М.:
Наука, 1987.
4) Волков Е.А., Численные методы. М.: Наука, 1988.
5) Элементы вычислительной математики, под ред. С.Б.Норкина. М.: Высшая
школа, 1966.
-----------------------
y
x
0
0
x
y
Рис. 1
Рис. 2
[pic]
Начало
Введите a и b
Введите eps
Вычисление наименьшего значения функции
minimum(a,b,eps,min)
Конец
Корень х= ,
x:6:utoch(eps)
minimum(a,b,eps,min)
a:=a+eps
b:=b-eps
chord(a,b,eps,min)
Уточнение корня методом хорд
Вывод значения x с количеством точек после запятой относительно погрешности
eps
Начало
min:=abs(proizv(a,eps))
d:=abs(proizv(b,eps))
min:=d
min >d
Да
Начало
chord(a,b,eps,min)
Конец
Нет
t:=k
Нет
Да
min=0
x1:=a
x:=x1-((b-x1)*fx(x1))/(fx(b)-fx(x1))
x1:=x
Abs(fx(x))/min>=eps
Да
Нет
Конец
abs(dy/2(2*dx))>=eps
dy2:=dy2+fx(5*x0/4-dx)
dy2:=fx(5*x0/4+dx)-2*fx(5*x0/4)
dy:=fx(x0+dx/2)-fx(x0-dx/2)
dx:=dx/2
dx:=1
Да
Нет
Начало
proizv(x0,eps)
Конец
fx(x)
Нет
Да
eps<=1
k:=k+1
eps:=eps*10
k:=-1
Начало
utoch(eps)
Вычисление
значений модуля производной на концах
промежутка
Процедура уточнения корня методом хорд
Процедура нахождения минимума функции
Количество знаков после запятой в выводе корня x
Подсчет степени погрешности
a:=a-eps
b:=b+eps
proizv:=dy/dx
Сравнение значений производной на концах отрезка
Конец
Ввод значений концов отрезка
Применение рекуррентной формулы уточнения корня
Вычисление первой производной.
x0- точка, в которой хотим найти производную.
Вычисление второй производной
Функция вычисления производной и определение точности вычислений
Первоначальная величина промежутка
Функция уточнения знаков после запятой
Описание данной функции
Данная функция
fx:=exp(x)-10*x
Конец
Начало