Рефераты - Афоризмы - Словари
Русские, белорусские и английские сочинения
Русские и белорусские изложения

Механические свойства биологических тканей

Работа из раздела: «Биология и естествознание»

Механические свойства биологических тканей

Cодержание

1. Механические свойства биологических тканей. Вязкоупругие, упруговязкие и вязкопластичные системы. Механические свойства мышц, костей, кровеносных сосудов, легких

1.1 Задачи, объекты и методы биомеханики

1.2 Значение биомеханики для медицины

1.3 Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза

1.4 Сочленения и рычаги в опорно-двигательном аппарате человека

1.5 Эргометрия. Механические свойства тканей организма

Список использованных источников

На рисунке даны характерные диаграммы экспериментально установленных зависимостей между напряжениями и деформациями в продольном направлении различных артериальных сосудов: 1 - под- вздошная артерия, 2 - внутренняя сонная артерия.

1.1 Задачи, объекты и методы биомеханики

Биомеханика - раздел биофизики, изучающий механические свойства живых тканей, органов и организма в целом, а также физические явления, происходящие в них в процессе жизнедеятельности и перемещения тела в пространстве (при движениях, дыхании, кровообращении).

Опираясь на данные анатомии и используя методы теоретической и прикладной механики, биомеханика исследует деформации структурных элементов тела, движение жидкостей и газов в живом организме, перемещения звеньев тела относительно друг друга и всего тела в пространстве, устойчивость и управляемость движений, и другие вопросы, доступные методам механики.

Биомеханика движений исследует структуру опорно-двигательного аппарата (характер подвижных сочленений, число степеней свободы), кинематику движений (скорость, ускорения, траектории), динамику движений - картину действующих сил. Чаще всего задача биомеханического исследования состоит в том, чтобы по кинематическим характеристикам движения определить картину действующих сил.

Современная биомеханика не ограничивается анализом движений. Сфера приложения биомеханики расширяется, и сейчас она включает в себя изучение дыхательной системы, системы кровообращения, специализированных рецепторов и т.п.

Биомеханика дыхательного аппарата изучает кинематику и динамику дыхательных движений, сопротивление дыханию, обусловленное трением воздуха при движении по гортани, трахее и бронхам (неэластическое сопротивление), сопротивление, связанное с упругостью грудной клетки, эластичностью тканей легких, а также поверхностным натяжением жидкости, тонким слоем покрывающим аловеолы (эластическое сопротивление).

Биомеханика кровообращения изучает реологические свойства крови, сосудистой стенки и периваскулярных тканей, особенности тока крови в ветвящихся сосудах, в сосудах малого диаметра и капиллярах, гидродинамические явления в полостях сердца и магистральных сосудах, возникновение акустических колебаний в сердечно-сосудистой системе, вопросы теплообмена и др.

Начало исследований по биомеханике было положено Леонардо да Винчи. Изучая полет птиц и движения человека, работу скелетных мышц и сердца, механику дыхания и голосообразования, он считал, что функционирование ряда систем организма подчинено законам механики.

Значительное влияние на развитие биомеханики оказали труды Джованни Борелли (1608-1679г.) итальянского анатома и физиолога, в книге “О движении животных” он дает анализ различных движений тела при ходьбе, беге, плавании и позиций механики. Борелли впервые определил положение центра тяжести тела человека. Экспериментальное исследование ходьбы было проведено братьями Вебер (E. и W. Weber, 1836 г.) и т.д.

В России начало изучения вопросов биомеханики положено работами И.М. Сеченова и П.Ф. Лесгафта. В “Очерках рабочих движений человека” (1901 г.) И.М. Сеченов дал сводку важнейших биомеханических характеристик движений человека. Кроме того следует отметить работы А.А. Ухтомского (“Физиология двигательного аппарата” - 1927 г.), Н.В. Парийского. Значительный вклад в развитие биомеханики внёс Н.А. Бернштейн, значительно усовершенствовавший методы регистрации и анализа движений и др.

Методы биомеханических исследований включают различные приемы регистрации положения и движения тела, измерений силы групп мышц, моментов инерции звеньев тела и др. Для изучения положения тела существуют приборы, позволяющие определять положение общего центра тяжести по отношению к поверхности опоры, величину опорного контура, степень устойчивости тела в пространстве. Для регистрации движений используются различные варианты световой записи.

Циклография заключается в регистрации на неподвижной фотопластинке нескольких избранных точек движущегося тела. Для регистрации движений, траектории которых могут накладываться друг на друга (например, циклические движения), применяют кимоциклографию - регистрацию движений на равномерно движущейся пленке. Система обработки циклограмм (циклограмметрия) позволяет по циклограмме определить амплитуду движения, скорости и ускорения. Большое распространение получили методы электрической регистрации биомеханических параметров движения. С помощью различных датчиков можно непосредственно регистрировать кривые движения в суставах, составляющие опорных реакций и точку приложения их равнодействующей, линейные и угловые скорости и ускорения и др.

При изучении рабочих движений человека используют специальные насадки к рабочему инструменту с датчиками, позволяющими регистрировать величину прилагаемых мышечных моментов в различных плоскостях, силу удара и т.п. При электрической регистрации параметров движения возможен их непосредственный ввод в ЭВМ. Это даёт возможность получения в реальном масштабе времени таких важнейших показателей движения, как моменты сил, действующих в суставе, работа и мощность.

1.2 Значение биомеханики для медицины

Результаты биомеханических исследований представляют интерес для физиологии и клинической медицины. На основе этих исследований могут быть составлены биомеханические характеристики органов и систем организма, знание которых является важнейшей предпосылкой для изучения процессов регуляции. Значительный интерес биомеханика представляет для протезирования. Многие характеристики опорно-двигательного аппарата используются при проектировании других технических систем (бионика).

Ряд биомеханических показателей состояния кровообращения (например, баллистокардиография, динамокардиография) и дыхания играет роль важных количественных показателей в диагностике, в определении показаний и противопоказаний к операциям на сердце и лёгких.

Исследования биомеханики дыхания и кровообращения использованы при создании аппарата “сердце-лёгкие”. Характеристики прочности костей, суставов и связок, упруго-вязких свойств мышц и других тканей представляют значительный интерес для травмотологии и ортопедии, для понимания механизмов действия повреждающих факторов и предупреждения травм.

1.3 Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза

Остео - (греч. osteou) - кость.

Генез - (греч. genesis) - часть сложного слова, означающая: связанный с процессом образования, возникновения.

Изучение динамики опорно-двигательной системы человека имеет целью изучить закономерности движения организма в пространстве и во времени и определить эффективность этих движений.

Опорно-двигательная система человека состоит из костей, суставов, связок и мышц. Это основная система, которая оформляет структуру человека и дает ему возможность выполнять основное свойство - двигаться, что играет основную роль в жизни. Движение совершается в местах соединений костей - в суставах. Мышцы обладают основным свойством - сокращаться и приводить таким образом в движение рычаги костей. Поэтому кости и их соединения являются пассивной частью двигательного аппарата, а мышцы - активной.

Кости позвоночного столба и нижних конечностей выполняют, в основном, опорную функцию. Кости черепа, позвоночного столба и грудной клетки выполняют защитные функции соответственно по отношению к мозгу, спинному мозгу, лёгким и сердцу. Двигательная функция осуществляется главным образом конечностями.

Вес скелета составляет для мужчин 18%, а для женщин 16% общего веса. Он является местом накопления минеральных солей организма - фосфора, кальция, железа и др. Скелет взрослого человека имеет 206 костей. Любая кость скелета занимает определенное место и положение в человеческом теле, имеет свою форму и строение и выполняет определённые функции.

Соединений в скелете приблизительно 150. Почти половина из них - суставы, самые подвижные соединения скелета. Многочисленные связки скрепляют суставы, обеспечивающие определенную кинематику движения и очень часто ограничивают их диапазон. Существует множество суставов со сложной кинематикой взаимного движения соединяемых костей скелета.

Силы, которые появляются в человеческом теле при движении и в процессе труда, имеют динамический характер. И здесь наблюдается влияние принципа целесообразности в структуре опорно-двигательной системы, где развиты образования, имеющие целью ослабить удары.

Движение твердого тела описывается в прямоугольной системе координат. Произвольное перемещение и поворот тела вокруг произвольной оси можно разложить соответственно на три перемещения по координатным осям и на три поворота вокруг них. Поэтому для полного описания движения жесткого тела нужно 6 величин (то есть 3 поступательных и 3 вращательных).

Независимые друг от друга величины, определяющие состояние данной физической системы, называются степенями свободы этой системы.

Жесткое тело, которое соединяется шарниром с другим телом, называется звеном. Звено имеет ограниченную свободу движения и меньше степеней свободы. Когда звено прикреплено к другому телу, принимаемому за неподвижное, степени свободы определяются возможностями перемещений и поворотов.

Опорно-двигательный механизм человека представляет собой исключительно сложную систему со многими степенями свободы. Когда две кости соединяются между собой суставом, они образуют кинематическую пару, а когда несколько костей соединяются последовательно суставами, они образуют кинематическую цепь.

Общее число степеней свободы равно разности между степенями свободы звеньев, когда они свободны, и числом ограничений (связей) в соединениях. Число степеней свободы определяется по формуле:

n = 6N - i P(i), i = 5,4,3,

где n - число степеней свободы, N - число подвижных звеньев, i - число ограничений степеней свободы в соединениях, P(i) - число соединений, имеющих “i” ограничений; P(i) = N - 1.

Общее число степеней свободы человеческого тела равно около:

6 144 - 5 81 - 4 33 - 3 29 = 240.

В процессе движения тела степени свободы находятся под контролем нервно-мышечного аппарата. Основная задача координации движений состоит в подчинении лишних степеней свободы, одной единой управляющей системе. Трудность этой задачи видна из того, что число степеней свободы больше двухсот.

Динамические модели опорно-двигательного аппарата принадлежат к классу склерономных голономных механических систем, к которым можно применить результаты классической механики. Живые организмы тоже подчиняются принципу сохранения механической энергии.

где Е - механическая энергия, Ек - кинетическая энергия, Еп - потенциальная энергия, Fl - внешние силы, Vl - скорости точек приложения внешних сил, Мk - моменты сил в суставах, k - угловые скорости, соответствующие моментам.

Кинетическая энергия определяется только скоростью движения материальных частиц организма, а потенциальная - положением этих частиц в гравитационном поле. Компоненты механической энергии определяются при помощи циклограммы или другими способами. Ими определяются положения и скорости центра тяжести отдельных звеньев. Выражая механическую энергию через измеренные таким образом величины, получаем:

; (1)

где обозначает суммирование по всем звеньям тела; - масса звена; V - скорость центра тяжести звена; Iik - компоненты тензора моментов инерции относительно осей i, k локальной системы координат с началом в центре тяжести звена; i, k - проекции угловых скоростей звена по тем же осям, g - гравитационное ускорение, Н - высота центра тяжести звена над некоторым гравитационным уровнем.

Первые два члена определяют компоненты кинетической энергии в зависимости от перемещений и поворотов, а третий член - потенциальную энергию. В уравнении (1) фигурируют движения, которые совершаются при помощи сил мышц в связи с трудовыми процессами: при перемещении предметов в пространстве или при некоторых ручных операциях и т.д. Положение тела можно определить при помощи уравнений Лагранжа второго рода, имеющих вид:

(2)

где “n”, как и прежде, число степеней свободы. Первые три уравнения содержат в правой части проекции активных и реактивных сил. Следующие (n - 3) уравнений содержат моменты реактивных сил и сил в суставах относительно осей при поворотах на угол i . В левых частях уравнения (2) представлены кинематические характеристики, динамические константы (размеры тела), массы звеньев и инерционным моменты.

При помощи системы уравнений (2) устанавливается связь между кинематическими и силовыми характеристиками движения живого организма. Эта связь очень сложна, поскольку не всегда нервное возбуждение мышцы, которое увеличивает его тягу, приводит к повороту сустава в направлении действия этой силы.

Примеры:

1) кисть имеет две степени свободы;

2) локтевом суставе - 1 степень свободы;

3) сочленение между плечевой и локтевой и между локтевой и лучевой костями относятся к типу суставов, допускающих только одну степень свободы. Таким образом, предплечье обладает двумя степенями свободы движения относительно плеча;

4) тазобедренный сустав относится к типу шаровидных суставов, допускающих три степени свободы.

1.4 Сочленения и рычаги в опорно-двигательном аппарате человека

Опорно-двигательный аппарат человека состоит из сочлененных между собой костей скелета, к которым в определенных точках прикрепляются мышцы. Кости скелета действуют как рычаги, которые имеют точку опоры в сочленениях и приводятся в движение силой тяги, возникающей при сокращении мышц.

Рычагом называется твердое тело, которое может вращаться около неподвижной оси. Различают три вида рычагов:

1) Когда точка опоры лежит между точками приложения действующей силы F и силы сопротивления R.

Условие равновесия рычага Fа = Rb.

Пример: череп, рассматриваемый в сагиттальной плоскости. (Сагиттальный - расположенный в переднезаднем направлении. Сагиттальные плоскости (мнимые) проходят вертикально спереди назад вдоль тела; только срединная сагиттальная плоскость делит его на две симметричные половины). Ось вращения О проходит через сочленение черепа с первым позвонком. R - сила тяжести головы, приложенная в центре тяжести. F - сила тяги мышц и связок, прикрепленных к затылочной кости.

2) Когда точка опоры лежит за точкой приложения силы сопротивления R, а сила F приложена на конце рычага.

Условие равновесия рычага Fa = Rb, но а > b, следовательно, F > R, то есть рычаг дает выигрыш в силе, но проигрыш в перемеще-

нии и называется рычагом силы.

Пример: действие свода стопы при подъёме на полупальцы. Опорой О служат головки плюсневых костей. R - сила тяжести всего тела, приложена к торанной кости. F - мышечная сила, осуществляющая подъём тела, передается через ахиллово сухожилие и приложена к выступу пяточной кости.

Когда сила F приложена ближе к точке опоры, чем сила R.

Условие равновесия рычага . Fa=Rb,но а < b, следовательно, F > R, то есть рычаг дает проигрыш в силе, но выигрыш в перемещении и называется рычагом скорости.

Пример: кости предплечья. Точка опоры О находится в локтевом суставе. F - сила мышц, сгибающих предплечье, R - сила тяжести поддерживаемого груза, приложенная обычно к кисти, а также сила тяжести самого предплечья.

,

То есть мышечная сила F, необходимая для преодоления данной силы R сопротивления, должна быть тем больше, чем под мышечным углом к оси рычага она направлена. Поэтому, например, человек удерживает относительно большой груз при согнутом предплечье и значительно меньший - при разогнутом.

Кости опорно-двигательного аппарата соединяются между собой в сочленениях или суставах.

Основной механической характеристикой сустава является число степеней свободы. Различают суставы с 1, 2 и 3 степенями свободы.

Примеры: плечево-локтевой сустав - одна степень свободы;

лучезапястный сустав - две степени свободы;

тазобедренный сустав, лопаточно-плечевое сочленение - три степени свободы (сгибание и разгибание, приведение и отведение, вращение).

1.5 Эргометрия. Механические свойства тканей организма

Человек с помощью мышц совершает механическую работу, которая обусловлена силой мышц и развиваемой ими мощностью. Средняя мощность, развиваемая человеком, не занятым специально физическим трудом, весьма невелика и, например, при ходьбе по ровной местности составляет 100-200 вт в зависимости от скорости.

Усталость свидетельствует о том, что мышцы совершают работу, хотя перемещения нет и работа равна нулю. Такую работу называют статической работой мышц.

Исследование работоспособности мышц называется эргометрией, а соответствующие приборы - эргомерами.

Пример: тормозной велосипед (велоэргометр). F - сила трения между лентой и ободом колеса, измеряемая динамометром. Вся работа испытуемого затрачивается на преодоление силы трения.

Тогда A = Fтр l = Fтр 2 r - за один оборот,

A = n Fтр 2 r - за n оборотов,

- средняя мощность.

Когда мышцы совершают работу, в них освобождается химическая энергия, накопленная в процессе метаболизма; она частично превращается в механическую работу, а частично теряется в виде тепла.

Во время работы используемых на велоэргометре можно рассчитать к.п.д. превращения химической энергии в механическую. КПД варьирует в зависимости от скорости вращения педалей и достигает максимальной величины - 22% - при нажимании ногой на педаль через каждые 0,9 (то есть при одном обороте педалей за 1,8 с). С помощью велоэргометра можно измерить не только к.п.д. мускулатуры ног, но и максимальную мощность, которую она способна развить - эта мощность достигает 40 Вт на 1 кг мышечной ткани. На таком уровне она может оставаться лишь короткое время, так как мышцы не могут получать кислород с необходимой для этого скоростью.

Список использованных источников

1. Аккерман Ю. Биофизика: Учебник. - М.: Мир, 1964. - 684 с.

2. Волькенштейн М.В. Общая биофизика: Монография - М.: Наука, 1978. - 599 с.

3. Basic biomechanics of the musculoskeletal system / Ed. By Nordin M., Frankel V. H. - Philadelphia, London: Lea & Febiger, 1989. - 323 p.

4. Биофизика: Учебник / Тарусов Б. Н., Антонов В. Ф., Бурлакова Е. В. и др. - М.: Высшая школа, 1968. - 464 с.

5. Ремизов А.Н. Медицинская и биологическая физика: Учеб. для мед. спец. Вузов. - М.: Высшая школа, 1999. - 616 с.

ref.by 2006—2025
contextus@mail.ru