Рефераты - Афоризмы - Словари
Русские, белорусские и английские сочинения
Русские и белорусские изложения
 

Расчёт и проектирование установки для получения жидкого кислорода

Работа из раздела: «Физика»

               Санкт-Петербургский государственный Университет
                  низкотемпературных и пищевых технологий.
                         Кафедра криогенной техники.



                               Курсовой проект

       по дисциплине «Установки ожижения и разделения газовых смесей»

                      Расчёт и проектирование установки
                      для получения жидкого кислорода.



                                       Работу выполнил

                                       студент 452 группы

                                      Денисов Сергей.

                                      Работу принял

                                      Пахомов О. В.



                         Санкт – Петербург 2003 год.
Оглавление.
Задание на расчёт…………………………………………………………………..3
1. Выбор типа установки и его обоснование……………………………………3
2. Краткое описание установки…………………………………………………..3
3. Общие энергетические и материальные балансы……………………….……4
4. Расчёт узловых точек установки…………………………….…………………4
5. Расчёт основного теплообменника…………………………….………………7
6. Расчёт блока очистки……………………………………………….…………..17
7. Определение общих энергетических затрат установки…………………..…..20
8. Расчёт процесса ректификации…………………………………….…………..20
9. Расчёт конденсатора – испарителя…………………………………………….20
10. Подбор оборудования…………………………………………………..………21
11. Список литературы……………………………………………..………………22



Задание на расчёт.
Рассчитать и спроектировать установку для получения газообразного кислорода
с чистотой       99,5 %, производительностью 320 м3/ч, расположенную в
городе Владивостоке.

1. Выбор типа установки и его обоснование.
В качестве прототипа выбираем установку К – 0,4, т. к. установка
предназначена для получения жидкого и газообразного кислорода чистотой
99,5 %, а также жидкого азота. Также установка имеет относительно несложную
схему.

2. Краткое описание работы установки.
Воздух из окружающей среды, имеющий параметры Т = 300 К и Р = 0,1 МПа,
поступает в компрессорную станцию в точке 1. В компрессоре он сжимается до
давления 4,5 МПа и охлаждается в водяной ванне до температуры 310 К.
Повышение температуры обусловлено потерями от несовершенства системы
охлаждения. После сжатия в компрессоре воздух направляется в теплообменник
– ожижитель, где охлаждается до температуры 275 К, в результате чего
большая часть содержащейся в ней влаги конденсируется и поступает в
отделитель жидкости, откуда выводится в окружающую среду. После
теплообменника – ожижителя сжатый воздух поступает в блок комплексной
очистки и осушки, где происходит его окончательная очистка от содержащихся
в нём влаги и СО2 . В результате прохождения через блок очистки воздух
нагревается до температуры 280 К. После этого поток сжатого воздуха
направляется в основной теплообменник, где охлаждается до температуры
начала дросселирования, затем дросселируется до давления Р = 0,65 МПа. В
основном теплообменнике поток разделяется. Часть его выводится из аппарата
и поступает в детандер, где расширяется до давления Р = 0,65 МПа и
поступает в нижнюю часть нижней колонны.Поток из дросселя поступает в
середину нижней колонны. Начинается процесс ректификации. Кубовая жидкость
(поток R, содержание N2 равно 68%) из низа нижней колонны поступает в
переохладитель, где переохлаждается на 5 К , затем дросселируется до
давления 0,13 МПа и поступает в середину верхней колонны. Азотная флегма
(поток D, концентрация N2 равна 97%) забирается из верхней части нижней
колонны, пропускается через переохладитель, где также охлаждается на 5К,
затем дросселируется до давления 0,13 МПа и поступает в верхнюю часть
верхней колонны. В верхней колонне происходит окончательная ректификация,
внизу верхней колонны собирается жидкий кислород, откуда он направляется в
переохладитель, где переохлаждается на 8 – 10 К. Далее поток кислорода
направляется в жидкостной насос, где его давление поднимается до 10 МПа, и
обратным потоком направляется в основной теплообменник. Затем он
направляется в теплообменник – ожижитель, откуда выходит к потребителю с
температурой 295 К. Азот из верхней части колонны последовательно проходит
обратным потоком переохладитель азотной флегмы и кубовой жидкости,
оснновной теплообменник и теплообменник – ожижитель. На выходе из
теплообменника – ожижителя азот будет иметь температуру 295 К.

3. Общие энергетические и материальные балансы.
V = K + A
0,79V = 0,005K + 0,97A
МV?i1B – 2B + Vдетhад?адМ = МVq3 + Мк K?i2K – 3K + V?i3В – 4В М
М – молярная масса воздуха.
Мк – молярная масса кислорода.

Принимаем V = 1 моль
К + А = 1
К = 1 – А
0,79 = 0,005(1 – А) + 0,97А
А = 0,813
К = 1 – 0,813 = 0,187
Определяем теоретическую производительнсть компрессора.
(1/0,187) = х/320 => х = 320/0,187 = 1711 м3/ч = 2207,5 кг/ч

4. Расчёт узловых точек установки
Принимаем:
Давление воздуха на входе в компрессор………………………. [pic]
Давление воздуха  на выходе из компрессора……………………Рвыхк = 4,5 МПА
Температура воздуха на входе в компрессор…..………………...[pic]
Температура воздуха на выходе из компрессора…….…………..[pic]
Температура воздуха на выходе из теплообменника – ожижителя…..[pic]
Температура воздуха на выходе из блока очистки…………………[pic]
Давление в верхней колонне…………………………………….. [pic]
Давление в нижней колонне………………………………………[pic]
Концентрация азота в кубовой жидкости ………………………..[pic]
Концентрация азота в азотной флегме…………………………… [pic]
Температурный перепад азотной флегмы и кубовой жидкости при прохождении
через переохладитель…………..……………………………..[pic]
Температура кубовой жидкости…………………………………….[pic]
Температура  азотной флегмы………………………………………[pic]
Температура отходящего азота…………………………………….[pic]
Температура жидкого кислорода…………………………………..[pic]
Разность температур на тёплом конце теплообменника –
ожижителя………………………………………..…………….[pic]
Температура азота на выходе из установки………………….[pic]
Температурный перепад кислорода …………………………?Т1К – 2К = 10 К
На начальной стадии расчёта принимаем: [pic]

Составляем балансы теплообменных аппаратов:
а) Баланс теплообменника – ожижителя.

КСр к?Т4К – 5К + АСрА?Т3А – 4А = VCpv?T2В – 3В

б) Балансы  переохладителя:
[pic]
[pic]
[pic]находим из номограммы [pic]для смеси азот – кислород.

в) Баланс переохладителя кислорода.
КCpK ?T1К – 2К = RCpR ?T2R – 3R

Принимаем ?T1К – 2К = 10 К

?T2R – 3R = 0,128*1,686*10/6,621*1,448 = 2,4
Т3R = Т2R + ?T2R – 3R = 74 + 2,4 = 76,4 К
i3R = 998,2

г) Баланс основного теплообменнка.
Для определения параметров в точках 3А и 4К разобьём основной теплообменник
на 2 трёхпоточных теплообменника:
[pic]
Истинное значение Vдет вычислим из баланса установки:
Vдет = [VMq3 + KMk?i2K – 3K + VM?i4B – 3B – VM?i1B – 2B]/Mhад?ад = [1*29*8
+ 0,187*32*(352,8 – 349,9) + 1*29*(522,32 – 516,8) – 1*29*(563,82 –
553,75)]/29*(394,5 – 367,5)*0,7 = 0,2
Vдет = 0,2V = 0,2*1711 = 342 м3/ч

Составляем балансы этих теплообменников:
I  VCpV?T4B – 6B = KCpK?T3K’ – 4K + ACpA?T2A’ – 3A
II (V – Vд )CpV?T6B-5B = KCpK?T3K – 3K’ + ACpA?T2A’ – 2A
Добавим к ним баланс теплообменника – ожижителя. Получим систему из 3
уравнений.
III  КСр к?Т4К – 5К + АСрА?Т3А – 4А = VCpv?T2В – 3В
Вычтем уравнение II из уравнения I:
VCpV?T4B – 6B - (V – Vд )CpV?T6B-5B = KCpK?T3K’ – 4K - KCpK?T3K – 3K’ +
ACpA?T2A’ – 3A - ACpA?T2A’ – 2A
Получаем систему из двух уравнений:
I VCpV (T4B - 2T6B + T5B ) + VдCpV(T6B – T5B) = KCpK(T4K – T3K) + ACpA?T3A
– 2A
II КСр к?Т4К – 5К + АСрА?Т3А – 4А = VCpv?T2В – 3В
I 1*1,012(280 – 2*173 + 138) + 0,387*1,093(173 – 138) = 0,128*1,831(T4K –
88) +0,872*1,048(T3А–85)
II 1*1,012*(310 – 275) = 0,128*1,093(295 - T4K) + 0,872*1,041(295 – T3А)
T4K = 248,4 К
T3А = 197,7 К
Для удобства расчёта полученные данные по давлениям, температурам и
энтальпиям в узловых точках сведём в таблицу:



|№    |1В   |2В   |3В   |4В   |5В   |5    |6В   |7В   |1R   |2R   |3R  |
|i,   |553,7|563,8|516,8|522,3|319,2|319,2|419,1|367,5|1350 |1131,|1243|
|кДж/ |     |     |     |     |     |     |     |     |     |2    |    |
|кг   |     |     |     |     |     |     |     |     |     |     |    |
|Р,   |0,1  |4,5  |4,5  |4,5  |4,5  |0,65 |4,5  |4,5  |0,65 |0,65 |0,65|
|МПа  |     |     |     |     |     |     |     |     |     |     |    |
|Т, К |300  |310  |275  |280  |138  |80   |188  |125  |79   |74   |76,4|
|№    |1D   |2D   |1К   |2К   |3К   |4К   |5К   |1А   |2А   |3А   |4А  |
|i,   |1015 |2465 |354,3|349,9|352,8|467,9|519,5|328,3|333,5|454,6|553,|
|кДж/ |     |     |     |     |     |     |     |     |     |     |    |
|кг   |     |     |     |     |     |     |     |     |     |     |    |
|Р,   |0,65 |0,65 |0,13 |0,12 |10   |10   |10   |0,13 |0,13 |0,13 |0,13|
|МПа  |     |     |     |     |     |     |     |     |     |     |    |
|Т, К |79   |74   |93   |84   |88   |248,4|295  |80   |85   |197,7|295 |


ПРИМЕЧАНИЕ.
1. Значения энтальпий для точек 1R, 2R, 3R , 1D, 2D взяты из номограммы Т –
i – P – x – y для смеси азот – кислород.
2. Прочие значения энтальпий взяты из [2].

5. Расчёт основного теплообменника.
Ввиду сложности конструкции теплообменного аппарата разобьём его на 4
двухпоточных теплообменника.
[pic]


Истинное значение Vдет вычислим из баланса установки:
Vдет = [VMq3 + KMk?i2K – 3K + VM?i4B – 3B – VM?i1B – 2B]/Mhад?ад = [1*29*8
+ 0,128*32*(352,8 – 349,9) + 1*29*(522,32 – 516,8) – 1*29*(563,82 –
553,75)]/29*(394,5 – 367,5)*0,7 = 0,2
Vдет = 0,2V = 0,2*  = 342,2 м3/ч
Составляем балансы каждого из четырёх теплообменников:
I   VA (i4B – i1) + Vq3 = A(i3A – i3)
II  VK (i4B – i2) + Vq3 = K(i4K – i4)
III (VA – Vда)(i1 – i5B) + Vq3 = A(i3 – i2A)
IV (VК – Vдк)(i2 – i5B) + Vq3 = К(i4 – i2К)
Здесь VA + VК = V , Vда + Vдк = Vд
Параметры в точках i1 и i2 будут теми же, что в точке 6В
Температуру в точке 5В задаём:
Т5В = 138 К
Р5В = 4,5 МПа
i5В = 319,22 кДж/кг = 9257,38 кДж/кмоль
Принимаем VA = А = 0,813, VК = К = 0,187, Vдк = Vда = 0,1, q3 = 1 кДж/кг
для всех аппаратов.
Тогда из уравнения I
VA (i4B – i6В) + Vq3 = A(i3A – i3)
0,813(522,32 – 419,1) + 1 = 0,813(454,6 – i3)
i3 = (394,6 – 112,5)/0,813 = 324,7 кДж/кг
Т3 = 140 К
Проверяем полученное значение i3 с помощью уравнения III:
(0,872 – 0,1)(394,5 – 319,22) + 1 = 0,872(i3 – 333,5)
59,1 = 0,872i3 – 290,8
i3 = (290,8 + 59,1)/0,872 = 401,3 кДж/кг
Уменьшим VА до 0,54:
0,54(522,32 – 419,1) + 1 = 0,872(454,6 – i3)
i3 = (394,6 – 70,023)/0,872 = 372,2 кДж/кг
Проверяем полученное значение i3 с помощью уравнения III:
(0,54 – 0,1)(394,5 – 319,22) + 1 = 0,872(i3 – 333,5)
i3 = (290,8 + 34,123)/0,872 = 372,6 кДж/кг
Т3 = 123 К
Тогда из уравнения II:
VK (i4B – i6В) + Vq3 = K(i4K – i4)
0,56(522,32 – 419,1) + 1 = 0,128(467,9 – i4)
72,6 = 59,9 – 0,128 i4
i4 = (72,6 – 59,9)/0,128 = 332 кДж/кг
Т4  = 140 К
Рассчитываем среднеинтегральную разность температур для каждого из четырёх
теплообменников.
а) Материальный баланс теплообменника I:
VA (i4B – i1) + Vq3 = A(i3A – i3)
Из баланса расчитываем истинное значение теплопритоков из окружающей среды:
0,54*1,15(280 – 173) + 1*q3 = 0,872*1,99(197,7 – 123)
q3 = 121,9 - 66,4 = 55,5 кДж/кг
Рассчитываем коэффициенты В и D:
VA (i4B – i6В) + Vq3 = A(i3A – i3)
VA  ?iB + Vq3 = A ?iA
?iB = A ?iA/ VA - V q3/VA        | ?iA/ ?iA
?iB = A ?iA/ VA - Vq3* ?iA/ ?iA
В = A/VA = 0,872/0,54 = 1,645
D = V q3/VA ?iA  = 1*55,5/0,54*(197,7 – 123) = 0,376
?iB = В ?iA - D ?iA = С ?iA = (1,635 – 0,376) ?iA = 1,259 ?iA

Составляем таблицу:



|№      |ТВ , К |iв,     |?iВ    |ТА, К     |iА,     |?iА     |
|       |       |кДж/кг  |       |          |кДж/кг  |        |
|0 – 0  |280    |522,32  |0      |197,7     |454,6   |0       |
|1 – 1  |272    |512,0   |10,324 |190,23    |-       |8,2     |
|2 – 2  |261    |501,7   |20,648 |182,76    |-       |16,4    |
|3 – 3  |254    |491,3   |30,971 |175,29    |-       |24,6    |
|4 – 4  |245    |481,0   |41,295 |167,82    |-       |32,8    |
|5 – 5  |235    |470,7   |51,619 |160,35    |-       |41      |
|6 – 6  |225    |460,4   |61,943 |152,88    |-       |49,2    |
|7 – 7  |218    |450,1   |72,267 |145,41    |-       |57,4    |
|8 – 8  |210    |439,73  |82,59  |137,94    |-       |65,6    |
|9 – 9  |199    |429,4   |92,914 |130,47    |-       |73,8    |
|10 – 10|188    |419,12  |103,2  |123       |372,6   |82      |


Строим температурные кривые:

?Тсринт = n/?(1/?Тср)
|№       |?Тср       |1/?Тср    |
|1       |82         |0,012     |
|2       |82         |0,012     |
|3       |78         |0,0128    |
|4       |79         |0,0127    |
|5       |77         |0,013     |
|6       |72         |0,0139    |
|7       |73         |0,0137    |
|8       |72         |0,0139    |
|9       |69         |0,0145    |
|10      |65         |0,0154    |

?(1/?Тср) = 0,1339
?Тср = 10/0,1339 = 54,7 К

б) Материальный баланс теплообменника II:
VK (i4B – i6В) + Vq3 = K(i4K – i4)
Из баланса расчитываем истинное значение теплопритоков из окружающей среды:
0,56*1,15(280 – 173) + 1*q3 = 0,187*1,684(248,4 – 140)
q3 = 23,4 - 68,9 = -45,5 кДж/кг
Рассчитываем коэффициенты В и D:
VК (i4B – i6В) + Vq3 = K(i4K – i4)
VК  ?iB + Vq3 = К ?iК
?iB = К ?iК/ VК - V q3/VК        | ?iК/ ?iК
?iB = К ?iК/ VК - Vq3* ?iК/ ?iК
В = К/VК = 0,128/0,56 = 0,029
D = V q3/VК ?iК  = -1*45,5/0,56*(248,4 – 140) =  -0,75
?iB = В ?iК - D ?iК = С ?iК = (0,029 + 0,75) ?iК = 0,779 ?iК

Составляем таблицу:
|№         |ТВ , К    |iв, кДж/кг|?iВ       |ТК, К    |iК,    |?iК   |
|          |          |          |          |         |кДж/кг |      |
|0 – 0     |280       |522,32    |0         |248,4    |332    |0     |
|1 – 1     |272       |511,7     |10,589    |237,56   |-      |13,593|
|2 – 2     |261       |501,1     |21,178    |226,72   |-      |27,186|
|3 – 3     |254       |490,6     |31,767    |215,88   |-      |40,779|
|4 – 4     |245       |480       |42,356    |205,04   |-      |54,372|
|5 – 5     |235       |469,3     |52,973    |194,2    |-      |67,975|
|6 – 6     |225       |458.8     |63,534    |183,36   |-      |81,558|
|7 – 7     |218       |448,2     |74,123    |172,52   |-      |95,151|
|8 – 8     |210       |437,6     |84,735    |161,68   |-      |108,77|
|9 – 9     |199       |427       |95,301    |150,84   |-      |122,33|
|10 – 10   |188       |419,12    |105,9     |140      |467,93 |135,93|


?Тсринт = n/?(1/?Тср)
|№       |?Тср       |1/?Тср    |
|1       |32         |0,03125   |
|2       |34         |0,0294    |
|3       |34         |0,0294    |
|4       |40         |0,025     |
|5       |41         |0,0244    |
|6       |42         |0,0238    |
|7       |45         |0,0222    |
|8       |48         |0,0208    |
|9       |48         |0,0208    |
|10      |48         |0,0208    |


?(1/?Тср) = 0,245
?Тср = 10/0,245 = 40,3 К

в) Материальный баланс теплообменника III:
(VA – Vда)(i6В – i5B) + Vq3 = A(i3 – i2A)
Из баланса расчитываем истинное значение теплопритоков из окружающей среды:
(0,54 – 0,1)*2,204(188 - 138) + 1*q3 = 0,813*1,684(123 – 85)
q3 = 55,8 – 33,9 = 21,9 кДж/кг
Рассчитываем коэффициенты В и D:
(VA – Vда)(i6В – i5B) + Vq3 = A(i3 – i2A)
(VА - Vда) ?iB + Vq3 = А ?iА
?iB = А ?iА/ (VА - Vда) - V q3/VА      | ?iА/ ?iА
?iB = А ?iА/ (VА - Vда) - Vq3* ?iА/ ?iА
В =А/(VА - Vда) = 0,813/0,44 = 1,982
D = V q3/(VА - Vда) ?iА  = 1*21,9/0,44*(372,6 – 333,5) =  0,057
?iB = В ?iА - D ?iА = С ?iА = (1,982 – 0,057) ?iА = 1,925 ?iА

Составляем таблицу:
|№         |ТВ , К    |iв, кДж/кг|?iВ     |ТА, К     |iА,    |?iА    |
|          |          |          |        |          |кДж/кг |       |
|0 – 0     |188       |394,5     |0       |123       |372,6  |0      |
|1 – 1     |175       |387       |7,527   |119,2     |-      |3,91   |
|2 – 2     |168       |379,4     |15,1    |115,4     |-      |7,82   |
|3 – 3     |162       |371,92    |22,58   |111,6     |-      |11,73  |
|4 – 4     |158       |364,4     |30,1    |107,8     |-      |15,64  |
|5 – 5     |155       |356,9     |37,6    |104       |-      |19,55  |
|6 – 6     |152       |349,3     |45,2    |100,2     |-      |23,46  |
|7 – 7     |149       |341,8     |52,7    |96,4      |-      |27,37  |
|8 – 8     |145       |334,3     |60,2    |92,6      |-      |31,28  |
|9 – 9     |141       |326,8     |67,741  |88,8      |-      |35,19  |
|10 – 10   |138       |319,22    |75,28   |85        |333,5  |39,1   |



?Тсринт = n/?(1/?Тср)
|№       |?Тср       |1/?Тср    |
|1       |56         |0,0179    |
|2       |53         |0,0189    |
|3       |50         |0,02      |
|4       |50         |0,02      |
|5       |51         |0,0196    |
|6       |52         |0,0192    |
|7       |53         |0,0189    |
|8       |52         |0,0192    |
|9       |52         |0,0192    |
|10      |53         |0,0189    |


?(1/?Тср) = 0,192
?Тср = 10/0,245 = 52 К

г) Материальный баланс теплообменника IV:
(VК – Vдк)(i6В – i5B) + Vq3 = К(i4 – i2К)
Из баланса расчитываем истинное значение теплопритоков из окружающей среды:
(0,56 – 0,1)*2,204(188 - 138) + 1*q3 = 0,128*1,742(123 – 88)
q3 = 7,804 - 50,7 = - 42,9 кДж/кг
Рассчитываем коэффициенты В и D:
(VК – Vдк)(i6В – i5B) + Vq3 = К(i4 – i2К)
(Vк - Vдк) ?iB + Vq3 = К ?iк
?iB = К ?iк/ (VК - Vдк) - V q3/VК        | ?iК/ ?iК
?iB = К ?iК/ (VК - Vдк) - Vq3* ?iК/ ?iК
В =К/(VК - Vдк) = 0,128/0,46 = 0,278
D = V q3/(VК - Vдк) ?iк  = -1*42,9/0,46*(372,6 – 332) =  - 1,297
?iB = В ?iК - D ?iК = С ?iк = (0,278 + 1,297) ?iК = 1,488 ?iК



Составляем таблицу:
|№         |ТВ , К    |iв, кДж/кг|?iВ       |ТК, К     |iК,    |?iК   |
|          |          |          |          |          |кДж/кг |      |
|0 – 0     |188       |394,5     |0         |140       |332    |0     |
|1 – 1     |174       |387,17    |7,33      |134,8     |-      |5,06  |
|2 – 2     |167       |379,8     |14,7      |129,6     |-      |10,12 |
|3 – 3     |162       |371,6     |22,9      |124,4     |-      |15,18 |
|4 – 4     |158       |365,2     |29,3      |119,2     |-      |20,24 |
|5 – 5     |155       |357,9     |36,6      |114       |-      |25,3  |
|6 – 6     |152       |350,5     |44        |108,8     |-      |30,36 |
|7 – 7     |149       |343,2     |51,3      |103,6     |-      |35,42 |
|8 – 8     |146       |335,9     |58,6      |98,4      |-      |40,48 |
|9 – 9     |143       |328,6     |65,9      |93,2      |-      |45,54 |
|10 – 10   |138       |319,22    |75,28     |88        |372,6  |50,6  |

?Тсринт = n/?(1/?Тср)

|№       |?Тср       |1/?Тср    |
|1       |40         |0,025     |
|2       |37         |0,027     |
|3       |38         |0,026     |
|4       |39         |0,0256    |
|5       |41         |0,0244    |
|6       |43         |0,0233    |
|7       |45         |0,0222    |
|8       |47         |0,0213    |
|9       |50         |0,02      |
|10      |50         |0,02      |


?(1/?Тср) = 0,235
?Тср = 10/0,245 = 42,6 К



д) Расчёт основного теплообменника.
Для расчёта теплообменника разбиваем его на 2 трёхпоточных. Для удобства
расчёта исходные данные сводим в таблицу.
|Поток     |Рср,   |Тср, К |Ср,       |Уд. Объём |?,      |?,      |
|          |ат.    |       |кДж/кгК   |v, м3/кг  |кг*с/м2 |Вт/мК,  |
|          |       |       |          |          |*107    |*103    |
|Прямой    |45     |226,5  |1,187     |0,005     |18,8    |23,6    |
|(воздух)  |       |       |          |          |        |        |
|Обратный  |100    |190    |2,4       |0,00106   |108     |15      |
|(О2 под   |       |       |          |          |        |        |
|дав)      |       |       |          |          |        |        |
|Обратный  |1,3    |155    |1,047     |0,286     |9,75    |35,04   |
|(N2 низ   |       |       |          |          |        |        |
|дав)      |       |       |          |          |        |        |

Прямой поток.
1)Скорость потока принимаем ? = 1 м/с
2) Секундный расход
Vсек = V*v/3600 = 1711*0,005/3600 = 2,43*10-3 м3/с
3) Выбираем тубку ф 12х1,5 мм
4) Число трубок
n = Vсек/0,785dвн ? = 0,00243/0,785*0,0092*1 = 39 шт
Эквивалентный диаметр
dэкв = 9 – 5 = 4 мм
5) Критерий Рейнольдса
Re = ? dвн?/g? = 1*0,004*85,4/9,81*18,8*10-7 = 32413
6) Критерий Прандтля
Pr = 0,802 (см. [2])
7) Критерий Нуссельта:
Nu = 0,023 Re0,8 Pr0,33 = 0,015*324130,8*0,8020,33 = 63,5
8) Коэффициент теплоотдачи:
?В = Nu?/dвн = 63,5*23,6*10-3/0,007 = 214,1 Вт/м2К

Обратный поток (кислород под давлением):
1)Скорость потока принимаем ? = 1 м/с
2) Секундный расход
Vсек = V*v/3600 = 320*0,0011/3600 = 9,8*10-5 м3/с
3) Выбираем тубку ф 5х0,5 мм гладкую.
4) Критерий Рейнольдса
Re = ? dвн?/g? = 1*0,007*330,1/9,81*106*10-7 = 21810
5) Критерий Прандтля
Pr = 1,521 (см. [2])
6) Критерий Нуссельта:
Nu = 0,023 Re0,8 Pr0,4 = 0,015*218100,8*1,5210,33 = 80,3
7) Коэффициент теплоотдачи:
?В = Nu?/dвн = 80,3*15*10-3/0,007 = 172 Вт/м2К

Обратный поток (азот низкого давления)
1)Скорость потока принимаем ? = 15 м/с
2) Секундный расход
Vсек = V*v/3600 = 1391*0,286/3600 = 0,11 м3/с
3) Живое сечение для прохода обратного потока:
Fж = Vсек/? = 0,11/15 = 0,0074 м2
4) Диаметр сердечника принимаем Dc = 0,1 м
4) Критерий Рейнольдса
Re = ? dвн?/g? = 15*0,004*2,188/9,81*9,75*10-7 = 34313
5) Критерий Нуссельта:
Nu = 0,0418 Re0,85 = 0,0418*343130,85=299,4
7) Коэффициент теплоотдачи:
?В = Nu?/dвн = 299,4*35,04*10-3/0,01 = 1049 Вт/м2К

Параметры всего аппарата:
1) Тепловая нагрузка азотной секции
QA = A?iA/3600 = 1391*(454,6 – 381,33)/3600 = 28,3 кВт
2) Среднеинтегральная разность температур ?Тср = 54,7 К
3) Коэффициент теплопередачи
КА = 1/[(1/?в)*(Dн/Dвн) + (1/?А)] = 1/[(1/214,1)*(0,012/0,009) + (1/1049)]
= 131,1 Вт/м2 К
4) Площадь теплопередающей поверхности
FA = QA/KA ?Тср = 28300/131,1*54,7 = 3,95 м2
5) Средняя длина трубки с 20% запасом
lА = 1,2FA /3,14DHn = 1,2*3,95/3,14*0,012*32 = 3,93 м
6) Тепловая нагрузка кислородной секции
QК = К?iA/3600 = 0,183*(467,93 – 332)/3600 = 15,1 кВт
7) Коэффициент теплопередачи
КК = 1/[(1/?в) + (1/?К) *(Dн/Dвн)] = 1/[(1/214,1) + (1/172)
*(0,01/0,007)]=77 Вт/м2 К
8) Площадь теплопередающей поверхности
FК = QК/KК ?Тср = 15100/77*25 = 7,8 м2
9) Средняя длина трубки с 20% запасом
lК = 1,2FК /3,14DHn = 1,2*7,8/3,14*0,01*55 = 5,42 м
Принимаем l = 5,42 м.
10) Теоретическая высота навивки.
Н = lt2/?Dср = 17*0,0122/3,14*0,286 = 0,43 м.

Второй теплообменник.

|Поток     |Рср,   |Тср, К |Ср,       |Уд. Объём |?, кг*с/м2|?,      |
|          |ат.    |       |кДж/кгК   |v, м3/кг  |          |Вт/мК,  |
|          |       |       |          |          |*107      |*103    |
|Прямой    |45     |155,5  |2,328     |0,007     |142,62    |23,73   |
|(воздух)  |       |       |          |          |          |        |
|Обратный  |100    |132,5  |1,831     |0,00104   |943,3     |106,8   |
|(О2 под   |       |       |          |          |          |        |
|дав)      |       |       |          |          |          |        |
|Обратный  |1,3    |112,5  |1,061     |0,32      |75,25     |10,9    |
|(N2 низ   |       |       |          |          |          |        |
|дав)      |       |       |          |          |          |        |

Прямой поток.
1)Скорость потока принимаем ? = 1 м/с
2) Секундный расход
Vсек = V*v/3600 = 1875*0,007/3600 = 2,6*10-3 м3/с

3) Выбираем тубку ф 10х1,5 мм гладкую.
4) Число трубок
n = Vсек/0,785dвн ? = 0,0026/0,785*0,0072*1 = 45 шт
Эквивалентный диаметр
dэкв = 9 – 5 = 4 мм
5) Критерий Рейнольдса
Re = ? dвн?/g? = 1*0,004*169,4/9,81*142,62*10-7 = 83140
6) Критерий Прандтля
Pr =1,392 (см. [2])
7) Критерий Нуссельта:
Nu = 0,023 Re0,8 Pr0,33 = 0,015*831400,8*1,3920,33 = 145
8) Коэффициент теплоотдачи:
?В = Nu?/dвн = 145*10,9*10-3/0,007 = 225,8 Вт/м2К

Обратный поток (кислород под давлением):
1)Скорость потока принимаем ? = 1 м/с
2) Секундный расход
Vсек = V*v/3600 = 800*0,00104/3600 = 1,2*10-4 м3/с
3) Выбираем тубку ф 10х1,5 мм с оребрением из проволоки ф 1,6 мм и шагом
оребрения tп = 5,5мм
4) Критерий Рейнольдса
Re = ? dвн?/g? = 1*0,007*1067,2/9,81*75,25*10-7 = 101200
5) Критерий Прандтля
Pr = 1,87 (см. [2])
6) Критерий Нуссельта:
Nu = 0,023 Re0,8 Pr0,4 = 0,015*1012000,8*1,870,33 = 297,2
7) Коэффициент теплоотдачи:
?В = Nu?/dвн = 297,2*10,9*10-3/0,007 = 462,8 Вт/м2К

Обратный поток (азот низкого давления)
1)Скорость потока принимаем ? = 15 м/с
2) Секундный расход
Vсек = V*v/3600 = 2725*0,32/3600 = 0,242 м3/с
3) Живое сечение для прохода обратного потока:
Fж = Vсек/? = 0,242/15 = 0,016 м2
4) Диаметр сердечника принимаем Dc = 0,1 м
4) Критерий Рейнольдса
Re = ? dвн?/g? = 15*0,01*3,04/9,81*75,25*10-7 = 60598
5) Критерий Нуссельта:
Nu = 0,0418 Re0,85 = 0,0418*605980,85=485,6
7) Коэффициент теплоотдачи:
?В = Nu?/dвн = 485,6*10,9*10-3/0,01 = 529,3 Вт/м2К

Параметры всего аппарата:
1) Тепловая нагрузка азотной секции
QA = A?iA/3600 = 2725(391,85 – 333,5)/3600 = 57 кВт
2) Среднеинтегральная разность температур ?Тср = 52 К
3) Коэффициент теплопередачи
КА = 1/[(1/?в)*(Dн/Dвн) + (1/?А)] = 1/[(1/225,8)*(0,01/0,007) + (1/529,3)]
= 121,7 Вт/м2 К
4) Площадь теплопередающей поверхности
FA = QA/KA ?Тср = 57000/121,7*52 = 9 м2
5) Средняя длина трубки с 20% запасом
lА = 1,2FA /3,14DHn = 1,2*9/3,14*0,01*45 = 7,717 м
6) Тепловая нагрузка кислородной секции
QК = К?iК/3600 = 0,128*(352,8 - 332)/3600 = 4,6 кВт
7) Коэффициент теплопередачи
КК = 1/[(1/?в) + (1/?К) *(Dн/Dвн)] = 1/[(1/225,8) + (1/529,3)
*(0,01/0,007)] = 140,3 Вт/м2 К
8) Площадь теплопередающей поверхности
FК = QК/KК ?Тср = 4600/140*42,6 = 0,77 м2
9) Средняя длина трубки с 20% запасом
lК = 1,2FК /3,14DHn = 1,2*0,77/3,14*0,01*45 = 0,654 м
Принимаем l = 7,717 м.
10) Теоретическая высота навивки.
Н = lt2/?Dср = 7,717*0,0122/3,14*0,286 = 0,33 м.

Окончательный вариант расчёта принимаем на ЭВМ.

6. Расчёт блока очистки.
1) Исходные данные:
Количество очищаемого воздуха …………………… V = 2207,5 кг/ч = 1711 м3/ч
Давление потока …………………………………………… Р = 4,5 МПа
Температура очищаемого воздуха………………………… Т = 275 К
Расчётное содержание углекислого газа по объёму …………………...С = 0,03%
Адсорбент ……………………………………………………NaX
Диаметр зёрен ………………………………………………. dз = 4 мм
Насыпной вес цеолита ………………………………………?ц = 700 кг/м3
Динамическая ёмкость цеолита по парам СО2  ……………ад = 0,013 м3/кг

Принимаем в качестве адсорберов стандартный баллон диаметром Da = 460 мм и
высоту слоя засыпки адсорбента
L = 1300 мм.
2) Скорость очищаемого воздуха в адсорбере:
? = 4Va/n?Da2
n – количество одновременно работающих адсорберов;
Vа – расход очищаемого воздуха при условиях адсорбции, т. е. при Р = 4,5
МПа и Тв = 275 К:
Va = VTB P/T*PB = 1711*275*1/273*45 = 69,9 кг/ч
? = 4*69,9/3*3,14*0,462 = 140,3 кг/ч*м2
Определяем вес цеолита, находящегося в адсорбере:
Gц = nVад ?ц = L*?*n*?*Da2/4 = 1*3,14*0,462*1,3*700/4 = 453,4 кг
Определяем количество СО2 , которое способен поглотить цеолит:
VCO2 = Gц*aд = 453,4*0,013 = 5,894 м3
Определяем количество СО2, поступающее каждый час в адсорбер:
VCO2’ = V*Co = 3125*0,0003 = 0,937 м3/ч
Время защитного действия адсорбента:
?пр = VCO2/ VCO2’ = 5,894/0,937 = 6,29 ч
Увеличим число адсорберов до n = 4. Тогда:
? = 4*69,9/4*3,14*0,462 = 105,2 кг/ч*м2
Gц = 4*3,14*0,462*1,3*700/4 = 604,6 кг
VCO2 = Gc *aд = 604,6*0,013 = 7,86 м3
?пр = 7,86/0,937 = 8,388 ч.
Выбираем расчётное время защитного действия ?пр = 6 ч. с учётом запаса
времени.

2) Ориентировочное количество азота для регенерации блока адсорберов:
Vрег = 1,2*GH2O /x’ ?рег
GH2O – количество влаги, поглощённой адсорбентом к моменту регенерации
GH2O = GцаН2О = 604,2*0,2 = 120,84 кг
?рег – время регенерации, принимаем
?рег = 0,5 ?пр = 3 ч.
х’ – влагосодержание азота при Тср.вых и Р = 105 Па:
Тср.вых = (Твых.1 + Твых.2)/2 = (275 + 623)/2 = 449 К
х = 240 г/м3
Vрег = 1,2*120,84/0,24*3 = 201,4 м3/ч
Проверяем количество регенерирующего газа по тепловому балансу:
Vрег *?N2*CpN2*(Твх + Твых. ср)* ?рег = ?Q
?Q = Q1 + Q2 + Q3 + Q4 + Q5
Q1 – количество тепла, затраченное на нагрев металла;
Q2 – количество тепла, затраченное на нагрев адсорбента,
Q3 – количество тепла, необходимое для десорбции влаги, поглощённой
адсорбентом;
Q4 – количество тепла, необходимое для нагрева изоляции;
Q5 – потери тепла в окружающую среду.
Q1 = GмСм(Тср’ – Tнач’ )
Gм – вес двух баллонов с коммуникациями;
См – теплоёмкость металла, См = 0,503 кДж/кгК
Tнач’ – температура металла в начале регенерации, Tнач’ = 280 К
Тср’ – средняя температура металла в конце процесса регенерации,
Тср’ = (Твх’ + Твых’ )/2 = (673 + 623)/2 = 648 К
Твх’ – температура азота на входе в блок очистки, Твх’ = 673 К;
Твых’ – температура азота на выходе из блока очистки, Твх’ = 623 К;

Для определения веса блока очистки определяем массу одного баллона, который
имеет следующие геометрические размеры:
наружний диаметр ……………………………………………….Dн = 510 мм,
внутренний диаметр ……………………………………………..Dвн = 460 мм,
высота общая ……………………………………………………..Н = 1500 мм,
высота цилиндрической части …………………………………..Нц = 1245 мм.
Тогда вес цилиндрической части баллона
GM’ = (Dн2 – Dвн2)Нц*?м*?/4 = (0,512 – 0,462)*1,245*7,85*103*3,14/4 = 372,1
кг,
где ?м – удельный вес металла, ?м = 7,85*103 кг/м3.
Вес полусферического днища
GM’’ = [(Dн3/2) – (Dвн3/2)]* ?м*4?/6 = [(0,513/2) –
(0,463/2)]*7,85*103*4*3,14/6 = 7,2 кг
Вес баллона:
GM’ + GM’’ = 382 + 7,2 = 389,2 кг
Вес крышки с коммуникациями принимаем 20% от веса баллона:
GM’’’ = 389,2*0,2 = 77,84 кг
Вес четырёх баллонов с коммуникацией:
GM = 4(GM’ + GM’’ + GM’’’ ) = 4*(382 + 7,2 + 77,84) = 1868 кг.
Тогда:
Q1 = 1868*0,503*(648 – 275) = 3,51*105 кДж
Количество тепла, затрачиваемое на нагревание адсорбента:
Q2 = GцСц(Тср’ – Tнач’ ) = 604,6*0,21*(648 – 275) = 47358 кДж
Количество тепла, затрачиваемое на десорбцию влаги:
Q3 = GH2OCp(Ткип – Тнач’ ) + GH2O*? = 120,84*1*(373 – 275) + 120,84*2258,2
= 2,8*105 кДж
? – теплота десорбции, равная теплоте парообразования воды;  Ср –
теплоёмкость воды.
Количество тепла, затрачиваемое на нагрез изоляции:
Q4 = 0,2Vиз ?изСиз(Тиз – Тнач) = 0,2*8,919*100*1,886*(523 – 275) = 8,3*104
кДж
Vиз = Vб – 4Vбалл = 1,92*2,1*2,22 – 4*0,20785*0,512*0,15 = 8,919 м3 – объём
изоляции.
?из – объёмный вес шлаковой ваты, ?из = 100 кг/м3
Сиз – средняя теплоёмкость шлаковой ваты, Сиз = 1,886 кДж/кгК
Потери тепла в окружающую среду составляют 20% от ?Q = Q1 + Q2 + Q4 :
Q5 = 0,2*(3,51*105 + 47358 + 8,3*104 ) = 9.63*104 кДж
Определяем количество регенерирующего газа:
Vрег = (Q1 + Q2 + Q3 + Q4 + Q5)/ ?N2*CpN2*(Твх + Твых. ср)* ?рег =
=(3,51*105 + 47358 + 2,8*105 + 8,3*104 + 9,63*104)/(1,251*1,048*(673 –
463)*3) = 1038 нм3/ч
Проверяем скорость регенерирующего газа, отнесённую к 293 К:
?рег = 4 Vрег*293/600*?*Da2 *n*Tнач = 4*1038*293/600*3,14*0,462*2*275 =
5,546 м/с
n – количество одновременно регенерируемых адсорберов, n = 2

Определяем гидравлическое сопротивление слоя адсорбента при регенерации.
?Р = 2f?L?2/9,8dэх2
где ?Р – потери давления, Па;
f – коэффициент сопротивления;
? – плотность газа, кг/м3;
L – длина слоя сорбента, м;
dэ – эквивалентный диаметр каналов между зёрнами, м;
? – скорость газа по всему сечению адсорбера в рабочих условиях, м/с;
? – пористость слоя адсорбента, ? = 0,35 м2/м3.
Скорость регенерирующего газа при рабочих условиях:
? = 4*Vрег*Твых.ср./3600*?*Da2*n*Тнач = 4*1038*463/3600*3,14*0,462*2*275 =
1,5 м/с
Эквивалентный диаметр каналов между зёрнами:
dэ = 4*?*dз/6*(1 – ?) = 4*0,35*4/6*(1 – 0,35) = 1,44 мм.
Для определения коэффициента сопротивления находим численное значение
критерия Рейнольдса:
Re = ?*dэ*?/?*?*g = 1,5*0,00144*0,79*107/0,35*25*9,81 = 198,8
где ? – динамическая вязкость, ? = 25*10-7 Па*с;
? – удельный вес азота при условиях регенерации,
? = ?0 *Р*Т0/Р0*Твых.ср = 1,251*1,1*273/1,033*463 = 0,79 кг/м3
По графику в работе [6] по значению критерия Рейнольдса определяем
коэффициент сопротивления f = 2,2
Тогда:
?Р = 2*2,2*0,79*1,3*1,52/9,81*0,00144*0,352 = 587,5 Па

Определяем мощность электроподогревателя:
N = 1,3* Vрег*?*Ср*(Твх – Тнач)/860 = 1,3*1038*1,251*0,25(673 – 293)/860 =
70,3 кВт
где Ср = 0,25 ккал/кг*К

7. Определение общих энергетических затрат установки
l = [V?в RToc ln(Pk/Pn)]/?из Кж*3600 =
1711*0,287*296,6*ln(4,5/0,1)/0,6*320*3600 = 0,802 кВт
где V – полное количество перерабатываемого воздуха, V = 2207,5 кг/ч = 1711
м3/ч
?в – плотность воздуха при нормальных условиях, ?в = 1,29 кг/м3
R – газовая постоянная для воздуха, R = 0,287 кДж/кгК
?из – изотермический КПД, ?из = 0,6
Кж – количество получаемого кислорода, К = 320 м3/ч
Тос – температура окружающей среды, принимается равной средне – годовой
температуре в городе Владивостоке, Тос = 23,60С = 296,6 К

8. Расчёт процесса ректификации.
Расчёт процесса ректификации производим на ЭВМ (см. распечатки 4 и 5).
Вначале проводим расчёт нижней колонны. Исходные данные вводим в виде
массива. Седьмая
строка массива несёт в себе информацию о входящем в колонну потоке воздуха:
принимаем, что в нижнюю часть нижней колонны мы вводим жидкий воздух.
1 – фазовое состояние потока, жидкость;
0,81 – эффективность цикла. Поскольку в установке для ожижения используется
цикл Гейландта (х = 0,19), то эффективность установки равна 1 – х = 0,81.
0,7812 – содержание азота в воздухе;
0,0093 – содержание аргона в воздухе;
0,2095 – содержание кислорода в воздухе.
Нагрузку конденсатора подбираем таким образом, чтобы нагрузка испарителя
стремилась к нулю.

8. Расчёт конденсатора – испарителя.
Расчёт конденсатора – испарителя также проводим на ЭВМ с помощью программы,
разработанной Е. И. Борзенко.



В результате расчёта получены следующие данные (смотри распечатку 6):
Коэффициент телоотдачи в испарителе……….……….ALFA1 = 1130,7 кДж/кгК
Коэффициент телоотдачи в конденсаторе…………… ALFA2 = 2135,2 кДж/кгК
Площадь теплопередающей поверхности………………..………F1 = 63,5 м3
Давление в верхней колонне ………………………………………Р1 = 0,17 МПа.

10. Подбор оборудования.
1. Выбор компрессора.
Выбираем 2 компрессора 605ВП16/70.
Производительность одного компрессора ………………………………..16±5% м3/мин
Давление всасывания……………………………………………………….0,1 МПа
Давление нагнетания………………………………………………………..7 МПа
Потребляемая мощность…………………………………………………….192 кВт
Установленная мощность электродвигателя………………………………200 кВт
2. Выбор детандера.
Выбираем  ДТ – 0,3/4 .
Характеристики детандера:
Производительность…………………………………………………… V = 340 м3/ч
Давление на входе ………………………………………………………Рвх = 4 МПа
Давление на выходе …………………………………………………….Рвых = 0.6 МПа
Температура на входе …………………………………………………..Твх = 188 К
Адиабатный КПД ……………………………………………………….?ад = 0,7
3. Выбор блока очистки.
Выбираем стандартный цеолитовый блок осушки и очистки воздуха ЦБ – 2400/64.
Характеристика аппарата:
Объёмный расход воздуха  ……………………………….V=2400 м3/ч
Рабочее давление:
максимальное ……………………………………………Рмакс = 6,4 МПа
минимальное………………………………………..……Рмин = 3,5 МПа
Размеры сосудов…………………………………………750х4200 мм.
Количество сосудов……………………………………..2 шт.
Масса цеолита …………………………………………..М = 2060 кг



Список используемой литературы:
1. Акулов Л.А., Холодковский С.В.  Методические указания к курсовому
   проектированию криогенных установок по курсам «Криогенные установки и
   системы» и «Установки сжижения и разделения газовых смесей» для студентов
   специальности 1603. – СПб.; СПбТИХП, 1994. – 32 с.
2. Акулов Л.А., Борзенко Е.И., Новотельнов В.Н., Зайцев А.В.Теплофизические
   свойства криопродуктов. Учебное пособие для ВУЗов. – СПб.: Политехника,
   2001. – 243 с.
3. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное
   пособие для ВУЗов, том 1., - М.: Машиностроение, 1998. – 464 с.
4. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное
   пособие для ВУЗов, том 2., - М.: Машиностроение, 1999. – 720 с.
5. Акулов Л.А., Холодковский С.В. Криогенные установки (атлас
   технологических схем криогенных установок): Учебное пособие. – СПб.:
   СПбГАХПТ, 1995. – 65 с.
6.    Кислород. Справочник в двух частях. Под ред. Д. Л. Глизманенко. М.,
«Металлургия», 1967.



Распечатка 1. Расчёт основного теплообменника.



Распечатка 2. Расчёт теплообменника – ожижителя.



Распечатка 3. Расчёт переохладителя.



Распечатка 4. Расчёт процесса ректификации в нижней колонне.



Распечатка 5. Расчёт процесса ректификации в верхней колонне.



Распечатка 6. Расчёт конденсатора – испарителя.



Распечатка 7. Расчёт переохладителя кислорода.
-----------------------
[pic]

[pic]

[pic]

[pic]



ref.by 2006—2022
contextus@mail.ru